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Abstract

The accurate prediction of reference crop evapotranspiration is of great significance to cli-

mate research and regional agricultural water management. In order to realize the high-pre-

cision prediction of ETO in the absence of meteorological data, this study use XGBoost to

select key influencing factors and BP algorithm to construct ETO prediction model of 12

meteorological stations in South West China in this study. ACO, CSO and CS algorithms

are used to optimize the model and improve the adaptability of the model. The results show

that Tmax, n and Ra can be used as the input combination of ETO model construction, and

Tmax is the primary factor affecting ETO. ETO model constructed by BP algorithm has good

goodness of fit with the ETO calculated by FAO-56 PM and ACO, CSO and CS have signifi-

cant optimization effect on BP algorithm, among which CSO algorithm has the best optimi-

zation ability on BP, with RMSE, R2, MAE, NSE, GPI ranging 0.200–0.377, 0.932–0.984,

0.140–0.261, 0.920–0.984, 1.472–2.000, GPI ranking is 1–23. Therefore, the input combi-

nation (Tmax, n and Ra) and CSO-BP model are recommended as a simplified model for

ETO prediction in Southwest China.

Introduction

Reference crop evapotranspiration (ETO) is an important parameter of ecological water cycle

and a key value to calculate actual evapotranspiration. Under the influence of the intensifica-

tion of Walker circulation caused by La Nina, the climate change in Southeast Asia is abnor-

mal, which is likely to cause floods and droughts, and the agricultural water balance will also

be potentially affected. Therefore, accurate and efficient prediction of ETO is of great signifi-

cance to farmland ecological management and irrigation decision-making.

Many models have been developed to predict ETO, such as Hargreaves [1], Turc [2], FAO-

56 Penman-Monteith (FAO-56 PM) [3], etc. FAO-56 PM considers all relevant factors (radia-

tion, average wind speed, humidity, maximum or minimum temperature, etc.) and is recog-

nized as the standard formula for ETO calculation. However, due to the uneven distribution
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and inconsistent scale of meteorological stations, it is difficult to obtain all meteorological

parameters used to calculate ETO, which makes it difficult to accurately calculate ETO.

Many scholars have proposed some empirical models with single input [4–7]. Tabari et al.

[8] (2011) conducted a study in Iran to compare the adaptability of 31 empirical models under

humid conditions. By comparing the model accuracy, it is found that the model based on tem-

perature and radiation (especially HS) has the closest estimation value to the standard PM for-

mula. Djaman et al. [9] evaluated the ETO simulation capability of multiple empirical formulas

by using the meteorological data of Senegal River Valley. The results show that mass transfer

models have the best performance. The accuracy of empirical models is generally low, and dif-

ferent climatic conditions will have a great impact on the results of the model.

In recent years, machine learning has become a hot topic in the field of data analysis. It is

widely used to deal with nonlinear and complex problems and has great advantages in predict-

ing ETO [10, 11], such as artificial neural network (ANN), extreme learning machine (ELM),

support vector machine (SVM), etc. [12, 13]. Min et al. [14] proposed several machine learning

models (SVM-HS and SVM ROM, etc.) to simulate empirical formulas. When the input fac-

tors are the same, SVM model performs better than empirical model. Extreme Learning

Machine (ELM) is also an efficient machine learning algorithm [15]. Its performance in esti-

mating ETO is better than Hargreaves and ANN model.

Among various intelligent algorithms, Error Back Propagation (BP) algorithm has good

generalization ability and adaptive ability [16, 17]. However, when machine learning algorithm

constructs a model, model parameters are difficult to reach the optimality. Optimization algo-

rithm has a wide range of applications in the process of parameter optimization, and many

scholars use optimization algorithms to improve the accuracy of models in recent years. Fang

et al. [18] used the fruit fly optimization algorithm (FOA) to optimize the ETO constructed by

generalized regression neural networks (GRNN) algorithm, and obtained a more efficient and

adaptive prediction model. Dong [19] compared Coupling Bat algorithm-categorical features

support (Bat-CB) hybrid algorithm and CB’s adaptability to ETO prediction. The results show

that Bat-CB has better robust stability.

There are many difficulties in the actual collection of meteorological data, which makes it

difficult to obtain all meteorological parameters used to calculate ETO, therefore many studies

select input parameters of models based on previous research experience, lacking clear theoret-

ical basis. Some scholars used linear analysis methods, for example, determine the dominant

factors of ETO model based on path analysis theory, principal component analysis and factor

analysis [20, 21]. Compared with linear analysis methods, machine learning algorithms can

better analyze nonlinear problems. Therefore, this study uses machine learning algorithm to

screen the factors with high contribution to the prediction results of the model.

The main objectives of this study are: (1) XGBoost algorithm was used to analyze the contri-

bution rate of meteorological factors to ETO, and the combination of few factors with a large

impact on ETO was obtained. (2) BP algorithm and optimized hybrid algorithm (ACO-BP,

CSO-BP, CS-BP) were used to build the ETO prediction model. (3) The accuracy and adapt-

ability of ETO model were evaluated in southwest China.

Materials and methods

Data sources

Southwest China is located in 91˚210-112˚040E and 20˚540-34˚190N, which consists of Chong-

qing, Sichuan, Guizhou and Yunnan. The Tropic of Cancer runs through southern Yunnan. It

has various terrain types, including plateau, mountain, hill, basin and plain, with Karst and

volcanic landforms as well. It is at the junction of the first and second steps in our country and
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the terrain is higher in the northwest and lower in the southeast. The elevation of Qingzang

Plateau is above 4000m, Yunnan-Guizhou Plateau is below 2000m, but Sichuan Basin is below

500m. The undulating terrain and complex direction of the mountains have a significant

impact on the climate. There are obvious differences in the horizontal distribution of tempera-

ture. In the same area, the vertical distribution of temperature is also prominent. Affected by

the Pacific southeast monsoon and Indian southwest monsoon, it has a tropical and subtropi-

cal monsoon climate. Southwest of China is rich in water sources, but the regional distribution

of precipitation is unbalanced. The rainfall on the windward slope can exceed 2000mm, how-

ever, the leeward and valley bottom are only 600-700mm. The annual precipitation of South-

west China is<900mm. Relevant research shows that Southwest of China has shown a trend

of high temperature and little rain in recent years. From 1961 to 2017, the annual average tem-

perature in Southwest China increased at a rate of 0.16˚C/10 years. The rising trend of average

temperature in autumn and winter is most obvious. Rainfall decreases in the east and increases

in the west. The rainy season and autumn rainy period both show a shortening trend. From

1961 to 2017, the annual precipitation in the southwest region decreased at a rate of 9.4mm/10

years.

The study considered 12 stations [Liuzhou (C1), Tongren (C2), Baise (C3), Nanning (C4),

Baoshan (C5), Yuxi (C6), Mengzi (C7), Barkam (C8), Yaan (C9), Bazhong (C10), Kaili (C11),

Liangping (C12)] in Southwest China.

The meteorological data in this study were daily dataset during 1960–2019 comes from

China Meteorological Data Network (http://data.cma.cn/), including sunshine duration (n),

average air temperature (Ta), maximum air temperature (Tmax), minimum air temperature

(Tmin), wind speed (Wind) and relative humidity (RH) extraterrestrial solar radiation (Ra).

FAO-56 PM

The daily reference evapotranspiration was calculated by FAO-56 PM equation:

ET0 ¼
0:408DðRn � GÞ þ g 900

Tmeanþ273
U2ðes � eaÞ

Dþ gð1þ 0:34U2Þ
ð1Þ

where Δ is Saturated water pressure—Slope of temperature curve (kPa/˚C), Rn is the net solar

radiation (MJ m−2day-1) G is the soil heat flux density (MJ m−2day-1), γ is the psychrometric

constant (kPa ˚C-1). Tmean is the mean air temperature (˚C),U2 is the wind speed at 2 m (M/s),

es is saturated vapor pressure (kPa), ea is the actual vapor pressure (kPa).

Different machine learning for predicting daily reference crop

evapotranspiration

Back-Propagation neural network (BP). BP neural network [22] is the most traditional

neural network. But compared with other traditional models, it has better persistence and

timely prediction. BP neural network is to analyze the error between the training result and

the expected result, so as to modify the weight and threshold, and get a model that can output

the same as the expected result. BP neural network is composed of input layer, hidden layer

and output layer. It is a multi-layer forward network based on error direction propagation.

The neurons in each layer are fully connected, and the neurons in the same layer are not con-

nected. By collecting and returning the errors generated by the system in the process of simula-

tion, we can use these errors to adjust the weight of neurons and generate an artificial neural

network system that can simulate the original problem (Fig 1). The parameter conditions of

the algorithm are set to: training times (net.trainParam.epochs = 1000), learning rate (net.
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trainParam.lr = 0.01), Minimum error of training goal (net.trainParam.goal = 0.00001),

momentum factor (net.trainParam.mc = 0.01).

Given training set D = {(x1,y1),(x2,y2. . .(xn,yn)} where xn�R
d, yn�R

l, Therefore, the weight

from the input layer to the hidden layer is set to vih, the threshold of the H-th neuron in the

Fig 1. BP neural network model diagram.

https://doi.org/10.1371/journal.pone.0269746.g001
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hidden layer is set to yh, and weight from hidden layer to output layer, is set to ωhj

Dohj ¼ � Z
@Ek
@ohj

ð2Þ

Input layer to hidden layer:

ah ¼
Xd

i¼1

vihxi ð3Þ

Activation function through hidden layer:

bh ¼ f ðah � ghÞ ð4Þ

Hidden layer to output layer:

bj ¼
Xq

h¼1

ohj � bh ð5Þ

Activation function through output layer:

ykj ¼ f ðbj � yjÞ ð6Þ

Error:

Ek ¼
1

2

Xl

j¼1

ðyk0j � ykj Þ
2

ð7Þ

Ant colony optimization algorithm (ACO). ACO algorithm [23, 24] is a part of swarm

intelligence, and a global optimization algorithm. It was first proposed by Marco Dorigo et al.

in 1991. It is a probabilistic algorithm used to find the optimal path in the graph. The basic

idea of ant colony algorithm comes from the shortest path principle of ant foraging in nature.

When looking for food, the ant colony exchanges foraging information by secreting a biologi-

cal hormone called pheromone. If the path is shorter and the pheromone concentration is

higher, more and more ants will choose a shorter path. Finally, they can find the shortest path

from the food source to the nest without any hint, and adaptively search the new best path

after the surrounding environment changes, so as to find the target quickly. The basic idea of

ACO algorithm is as follows:

Suppose there are s parameters in the network. The neural network parameter Pi (1�i�s)

is set to N random non-zero values to form a set IP. Then simulate the foraging behavior of

ant colony. When ants start from the ant nest to find food, each ant starts from the first set and

selects an element from each set according to a certain probability and according to the infor-

mation state of each element in the set. When the ant completes the selection of elements in all

sets, it reaches the food source and returns to the ant nest according to the original path. At the

same time, the pheromone of the selected element in the set is updated according to the follow-

ing formula (8), and the process is repeated. When all ants converge to the same path, it means

that the optimal solution of network parameters is found.

τjðIPiÞ tþ nð Þ ¼ ρτjðIPiÞ tð Þ þ ΔτjðIPiÞ ð8Þ

τj (Ipi)(t) represents the amount of information on element J in set Ipi at t time, ρ Repre-

sents the maintenance factor of pheromone, Δτj (Ipi) represents the sum of pheromones
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released by all ants on element J in set Ipi, the expression is

Δτk
j IPið Þ ¼

Q
ek If the k � th ant selects Pj IPið Þ in this cycle

0 otherwise
ð9Þ

(

Where, ek represents a set of weights selected by the k-th ant is used as the output error of

the weights of the neural network, where o and oq represent the actual output and expected

output of the neural network. The parameter conditions of the algorithm are set to: population

size (popsize = 10), maximum Generation (maxgen = 50), pheromone polatility (rou = 0.9),

transition probabilities constant (p0 = 0.2).

Cat Swarm Optimization (CSO). CSO optimization algorithm [25, 26] was first pro-

posed by Shu An Chu et al. in 2006. It is a new swarm optimization algorithm based on the

predation strategy of cats, and is generally used to find the optimal solution. Cat swarm algo-

rithm includes two important simulation processes, "search mode" and "tracking mode". The

cat’s pattern of laziness and looking around is called search pattern; the state of a cat when

tracking a dynamic target is called tracking mode. The steps of cat swarm algorithm are as

follows:

a. Determine the number of individuals involved in the optimization calculation, that is, the

number of cats. Each cat has a d-dimensional position coordinate value, and xi,d represents

the position coordinate value of the ith cat in the dth dimension.

b. Randomly initialize the velocity vi,d for each one-dimensional position.

c. The fitness function value of each cat is evaluated, and the cat with the optimal fitness func-

tion value is regarded as the local optimal cat.

d. Cats were randomly assigned to search mode and tracking mode according to the mixture

ratio.

e. Their fitness is calculated according to the fitness function value, and the best solution in

the current population is retained.

f. This method is used for iterative calculation until the preset number of iterations is reached.

The parameter conditions of the algorithm are set to: population size(popsize = 10), maxi-

mum iterations(npop = 50), mixture ratio (MR = 0.3). For cats in search mode, the following

necessary parameters are defined: Search Memory Pool (SMP), Seeking Range of selected

Dimension (SRD), Counts of Dimension to Change (CDC) and Mixture Ratio (MR). The

operation process is as follows:

1. Copy the SMP copy of the cat in the search mode.

2. For each individual copy in the memory pool, determine which dimension positions need

to be changed according to the CDC value, and randomly increase or decrease the SRD

ratio of the dimension position value that needs to be changed.

3. The fitness values of all candidate solutions in the memory pool are calculated respectively.

4. Select the candidate point with the highest fitness value to replace the current cat’s position

and complete the cat’s position update.

Tracking mode simulates the tracking target behavior in cat hunting behavior, which is

equivalent to local search in optimization problem. This model updates the position of the cat

by changing the speed (i.e. eigenvalue) of each dimension of the cat to achieve the optimal
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position. Suppose the position coordinates and speeds of the cat are expressed as:

xi ¼ ðxi;1; xi;2; xi;3; . . . ; xi;mÞ � i ¼ 1; 2; 3; . . . ;m ð10Þ

vi ¼ ðvi;1; vi;2; vi;3; . . . ; vi;mÞ � i ¼ 1; 2; 3; . . .m ð11Þ

The cat with local optimal solution during the operation of cat swarm algorithm is

expressed as:

xb ¼ ðxb;1; xb;2; xb;3; . . . ; xb;mÞ � i ¼ 1; 2; 3; . . . ;m ð12Þ

For a cat in tracking mode, its moving position is determined according to its speed. First

determine the update speed:

vk;d ¼ vk;d þ r1 � c1 � ðxbest;d � xk;dÞ ð13Þ

where d = 1,2,. . .,M

Where r1, c1 is the adjustment parameter and takes a constant.

The position of a cat changes by speed:

xk;d ¼ xk;d þ vk;d ð14Þ

Cuckoo optimization algorithm (CS). CS optimization algorithm [27] simulates the

nesting habit of cuckoo. It relies on other birds to hatch and brood its own offspring. The CS

algorithm assumes the following ideal states: Each cuckoo lays only one egg at a time, and a

nest is randomly selected for storage; In the process of nest searching, the nest with the best

eggs will be reserved for the next generation. The number of available nests is fixed, and let the

probability of foreign eggs being found in the nest be P, P2[0,1].

In the cuckoo search algorithm, the cuckoo’s lévy flight route to find the nest and the cuck-

oo’s random flight route to avoid its eggs being found by the nest owner are two important

routes of the algorithm. Lévy flight, which is used to optimize the search, is one of the most

effective target finding methods in CS algorithm. The parameter conditions of the algorithm

are set to: initial population size (PopulationSize_Data = 30), probability of cuckoo eggs being

found (pa = 0.25), step control amount (cs_alpha = 1.0).

The formula for Lévy flight is as follows:

X tþ1ð Þ

i ¼ xti þ α� Levy βð Þ ð15Þ

Where, X tþ1ð Þ

i represents the position of the bird’s nest, α represents the step control vector,

Levy(β) represents Levi’s random search path. As shown in the formula, the schematic dia-

gram of Lévy flight is as follows:

Levy βð Þ � μ ¼ t� β 1 < β � 3 ð16Þ

CS algorithm calculates the fitness value of the objective function, and if the location of the

next generation nest is better, this location will be updated. After the location is updated, com-

pare the probability P of being found by the host with the random number R, and If R>P, then

X tþ1ð Þ

i changes randomly. On the contrary, it does not change. Finally, a group of nest positions

with better test values shall be reserved. The technical process of this study is in Fig 2.
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Model prediction evaluation

The coefficient of determination (R2), relative root mean square error (RMSE), mean absolute

error (MAE), and Nash-Sutcliffe coefficient (NSE) and overall evaluation index (GPI) were

used to evaluate performances of the models [28].

R2 ¼

Pn
i¼1

Di � �D Ei � �Eð Þ
� �2

Pn
i¼1

Di � �D2
Pn

i¼1
Ei � �Eð Þ

2
ð17Þ

Fig 2. The technical process of this study.

https://doi.org/10.1371/journal.pone.0269746.g002
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RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1
Di � Eið Þ

2

r

ð18Þ

NSE ¼ 1 �

Pn
i¼1

Di � Eið Þ
2

Pn
i¼1

Yi � �Eð Þ
2

ð19Þ

MAE ¼
1

n

Xn

i¼1
jDi � Eij ð20Þ

GPI ¼ αj

X4

i¼1
Sj � �T j

� �
ð21Þ

where Di and Ei are the simulated and measured values, respectively; n is the number of mea-

sured values; �D and �E are the means of the simulated and measured values, respectively. Tj is

the normalized value of RMSE, MAE, R2, NSE, �T j is the median of the corresponding parame-

ter, when Sj is RMSE and MAE, αj is -1, otherwise take 1.

Results

Analysis of key factors based on XGBoost algorithm

The meteorological parameters used to build the ETO prediction model were strongly coupled.

It is difficult to directly determine the impact of a single factor on model construction. In this

study, XGBoost algorithm is applied to determine the essential factors. Fig 3 shows the influ-

ence degree of seven meteorological factors on ETO prediction.

As can be seen from the figure, Tmax is the primary factor affecting ETO calculation. The

importance range of 11 stations is 0.405–0.704, which is much higher than other meteorologi-

cal factors, indicating that temperature is significantly correlated with ETO. The factor ranking

second in importance is n, and the range of importance is 0.223–0.297. Ra is one of the impor-

tant factors in calculating evapotranspiration. In most sites, the importance of Ra is second

only to n, and the importance result is 0.038–0.167. However, in Yuxi, RH has a more signifi-

cant effect than Ra. The air humidity in Yuxi varies strongly in different seasons. It rains fre-

quently from May to October, and heavy rainstorms are mostly concentrated from June to

August. The "single point rainstorm" with small range and high intensity occurs frequently,

which may affect the correlation calculation between humidity and ETO by the algorithm. The

sum of the importance of the top three factors obtained by the algorithm ranges from 0.829 to

0.982. In the FAO-56 calculation formula, Tmax, n and Ra are also important constituent

parameters, which shows strong rationality.

In general, the impact of meteorological factors on ETO is consistent at all stations. The

sum of the importance of Tmax, n and Ra accounts for more than 82.9% of all factors, which

can be used as a representative factor to construct the input combination. Therefore, this study

takes these three factors as the input combination of subsequent ETO models.

Statistical performance of ETO models

The input combination (Tmax, n and Ra) obtained through key factor analysis is used to con-

struct ETO prediction model. In this study, BP algorithm and three optimization algorithms

are used to build ETO prediction model. Fig 4 shows the accuracy of each model, and the spe-

cific accuracy index of each model is shown in Table 1. It can be seen from the table that the
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accuracy of ETO model constructed by BP algorithm is satisfactory, with RMSE, R2, MAE,

NSE ranging 0.488–0.779, 0.499–0.930, 0.386–0.759, 0.400–0.905. The three optimization algo-

rithms have good optimization effect on BP model. Among them, CSO-BP has the highest

accuracy, with RMSE, R2, MAE, NSE ranging 0.200–0.0.377, 0.932–0.984, 0.140–0.261, 0.920–

0.984. The accuracy of CS-BP and ACO-BP is greatly improved compared with the unopti-

mized BP model, with RMSE, R2, MAE, NSE ranging 0.209–0.387, 0.930–0.982, 0.149–0.265,

0.915–0.982 (CS-BP), 0.422–1.131, 0.682–0.962, 0.287–0.945, 0.352–0.899 (ACO-BP).

The comprehensive evaluation index GPI performance of ETO model is shown in Table 2.

It can still be seen that CSO-BP has the best fitting ability. The GPI range is 1.472–2.000 and

the GPI ranking range is 1–23. The performance of the four models in GPI is the same as that

of the previous four evaluation indexes.

The performance of ETO model in each station is shown in Fig 5. In Bazhong station, the

accuracy of BP algorithm is the highest, GPI is 1.108 and GPI ranking is 26. In Baoshan, Yuxi

and Barkam stations, the accuracy of BP model is low. ACO-BP is superior to BP model in

most stations, but it has poor adaptability in Ya’an and Bazhong stations. The performance of

CSO-BP and CS-BP algorithms in 12 stations is very similar. It can be seen that the adaptability

of the two models in different sites is very satisfactory. They perform best in Liangping site

(GPI = 2.000, 1.951; ranking 1 and 2) and slightly worse in Yuxi site (GPI = 1.472, 1.436; rank-

ing 23 and 24). Among all ETO models, CSO-BP model has the best accuracy advantage in

Fig 3. Importance of meteorological factors to ETO at different stations.

https://doi.org/10.1371/journal.pone.0269746.g003
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estimating ETO at each site. The GPI range is 1.472–2.000 and the ranking range is 1–23. And

using the combination of only three factors as the input factor to build the model, CSO-BP can

maintain good stability and high accuracy.

Discussion

Using comprehensive meteorological factors to calculate ETO can obtain the highest accuracy,

but restricted by the actual situation of meteorological stations, meteorological data are some-

times missing, and the determination of some parameters takes time and manpower. There-

fore, it is necessary to explore an input combination with only a few factors. Many scholars

have explored the model of simplifying input factors, through trial-and-error method assisted

by computer software [29, 30]. However, these methods have too much workload and do not

have universality.

Fig 4. (a-d) Comparison of different ETO models.

https://doi.org/10.1371/journal.pone.0269746.g004
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The algorithm quantifies the characteristic correlation between meteorological factors and

ETO, which is more efficient. Xing et al. [20] used path to analyze the direct impact of various

meteorological factors on the path coefficient and factors of ETO, and determined the leading

factors for constructing the prediction model. Machine learning algorithms have better solu-

tions to nonlinear problems than mathematical statistics. Some scholars use the random forest

algorithm to recognize the optimal factor combination, which has a better conclusion than the

linear algorithm [31].

This paper calculates the characteristic importance of seven meteorological factors on ETO

model construction through XGBoost algorithm, and uses a few factors that have a great

impact on ETO as the input combination of model construction. In the analysis of characteris-

tic importance of meteorological factors, Tmax is considered to be the primary factor affecting

ETO, with the highest importance among all factors (0.405–0.704). In the construction of

evapotranspiration model, Wu et al. found that the factor combination based on Tmax was

input into the model, and the prediction accuracy was the highest [32]. This is similar to the

conclusion of this paper.

Table 1. Accuracy indicators of the four ETO models.

Site BP ACO-BP CSO-BP CS-BP

RMSE R2 MAE NSE RMSE R2 MAE NSE RMSE R2 MAE NSE RMSE R2 MAE NSE

Liuzhou 0.844 0.930 0.628 0.663 0.537 0.962 0.397 0.863 0.252 0.972 0.186 0.970 0.258 0.971 0.190 0.969

Tongren 0.816 0.759 0.652 0.658 0.722 0.954 0.484 0.732 0.230 0.975 0.152 0.973 0.234 0.974 0.158 0.972

Baise 0.590 0.851 0.482 0.833 0.601 0.829 0.484 0.827 0.282 0.964 0.203 0.962 0.292 0.961 0.212 0.959

Nanning 0.845 0.604 0.670 0.600 0.527 0.864 0.443 0.844 0.205 0.977 0.153 0.976 0.209 0.976 0.155 0.976

Baoshan 0.869 0.500 0.686 0.405 0.479 0.933 0.354 0.819 0.281 0.950 0.189 0.938 0.292 0.947 0.203 0.933

Yuxi 0.916 0.582 0.724 0.525 0.422 0.932 0.287 0.899 0.377 0.935 0.248 0.920 0.387 0.930 0.255 0.915

Mengzi 0.866 0.643 0.693 0.563 0.473 0.923 0.387 0.870 0.348 0.932 0.261 0.929 0.347 0.932 0.265 0.930

Barkam 0.895 0.546 0.759 0.400 0.467 0.887 0.374 0.837 0.259 0.951 0.186 0.950 0.266 0.949 0.194 0.947

Yaan 0.589 0.841 0.447 0.813 1.097 0.682 0.945 0.352 0.233 0.971 0.170 0.971 0.240 0.969 0.179 0.969

Bazhong 0.488 0.911 0.386 0.905 1.131 0.804 0.776 0.491 0.233 0.979 0.145 0.978 0.235 0.979 0.149 0.978

Kaili 0.788 0.898 0.575 0.706 0.744 0.920 0.659 0.738 0.273 0.965 0.194 0.965 0.275 0.965 0.196 0.964

Liangping 0.845 0.788 0.616 0.717 0.755 0.851 0.624 0.774 0.200 0.984 0.140 0.984 0.215 0.982 0.158 0.982

https://doi.org/10.1371/journal.pone.0269746.t001

Table 2. GPI value and GPI ranking of each site.

Site BP ACO-BP CSO-BP CS-BP

GPI Ranking GPI Ranking GPI Ranking GPI Ranking

Liuzhou 0.082 39 1.081 28 1.839 11 1.824 12

Tongren -0.279 41 0.550 35 1.914 7 1.900 8

Baise 0.642 32 0.573 34 1.757 15 1.723 18

Nanning -0.744 42 0.803 31 1.950 3 1.940 4

Baoshan -1.314 46 1.066 29 1.706 19 1.663 20

Yuxi -1.050 45 1.336 25 1.472 23 1.436 24

Mengzi -0.774 43 1.092 27 1.496 21 1.493 22

Barkam -1.345 47 0.989 30 1.755 16 1.730 17

Yaan 0.633 33 -1.588 48 1.877 9 1.851 10

Bazhong 1.108 26 -0.943 44 1.938 5 1.929 6

Kaili 0.209 37 0.249 36 1.782 13 1.777 14

Liangping -0.112 40 0.196 38 2.000 1 1.951 2

https://doi.org/10.1371/journal.pone.0269746.t002
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In addition to Tmax, the main factors affecting the ETO model include n and Ra. The sum of

the importance of the three factors is 0.829–0.982, which is the main factor affecting the model

construction.

This paper uses BP and hybrid algorithm (ACO-BP, CSO-BP, CS-BP) to build ETO model.

The input of the model adopts the combination of Tmax, n and Ra. The results show that the

ETO model based on machine learning algorithm is acceptable. Based on the optimization

algorithm, the prediction results of the optimized hybrid model have better coupling with the

standard value. ACO optimization algorithm has strong robustness in optimization perfor-

mance, but ACO-BP algorithm has the lowest accuracy among all hybrid algorithms. Although

ACO-BP algorithm is better than BP algorithm, it has slow convergence speed and is easy to

fall into local optimization. In this study, when estimating ETO using ACO-BP model, the

accuracy of individual stations is very low, and it is likely that the algorithm falls into local opti-

mization. Moreover, ACO algorithm is prone to stagnation, that is, after the search is carried

out to a certain extent, the solutions found by all individuals are completely consistent, and

cannot further search the solution space, which is not conducive to finding better solutions.

The convergence speed of CS algorithm has little correlation with parameter changes, and it is

not easy to fall into local optimization. In this study, the estimation accuracy of CS-BP model

is better than ACO-BP, and the solution of the model is very close to the standard value. Nazri

Mohd. Nawi first proposed CS algorithm to optimize BP [27], and found that CS algorithm

greatly improves the training efficiency of BP, which makes the result more accurate, which is

consistent with the conclusion of this study. Among all hybrid algorithms, CSO-BP has the

best performance and high goodness of fit. In recent years, some scholars have used CSO and

PSO algorithms to optimize the prediction model [25], and found that the model optimized by

CSO has more advantages. This shows that the optimization effect of CSO algorithm is very

good, which is similar to the conclusion of this study. After inputting the main factors selected

Fig 5. GPI performance of the four models at each site.

https://doi.org/10.1371/journal.pone.0269746.g005
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by XGBoost algorithm, the four ETO models constructed in this study perform well, among

which the evaluation indexes of CSO-BP (RMSE, R2, MAE, NSE) ranging 0.200–0.0.377,

0.932–0.984, 0.140–0.261, 0.920–0.984. The GPI range is 1.472–2.000 and the GPI ranking

range is 1–23.

This shows that the factor combination selected by XGBoost algorithm is reliable. Input

Tmax, n and Ra into ETO model, and the accuracy loss is very small. Therefore, these three fac-

tors can be used as input reference for ETO model in Southwest China. In future research, we

will combine satellite data to conduct a global-scale ETO model applicability study on the

hybrid model.

Conclusions

In this study, XGBoost algorithm is used to determine the combination of key factors affecting

ETO prediction and determine as few key meteorological factors as possible. The combination

of selected factors is used as inputs to construct ETO model based on machine learning and

optimization algorithm (BP, ACO-BP, CSO-BP, CS-BP) in 12 stations of southwest China.

The results showed that:

1. When the importance of meteorological factors to ETO model is determined by XGBoost

algorithm, Tmax is the primary factor affecting ETO. The sum of the importance of the top

three factors (Tmax, n and Ra) is greater than 82.9%, and these three factors can be used as

the input combination of ETO model construction to save the calculation cost.

2. When BP algorithm is used to build ETO model, the prediction accuracy is satisfactory,

with RMSE, R2, MAE, NSE ranging 0.488–0.779, 0.499–0.930, 0.386–0.759, 0.400–0.905.

The range of GPI value is -1.345–1.108, ranking 26–47. The model has the highest accuracy

in Bazhong station, and GPI is 1.108, ranking 26.

3. When three optimization algorithms and BP are used to construct the hybrid model for

predicting ETO (ACO-BP, CSO-BP, CS-BP), the hybrid model shows better accuracy than

BP. Among them, CSO-BP model has the highest accuracy, with RMSE, R2, MAE, NSE

ranging 0.200–0.377, 0.932–0.984, 0.140–0.261, 0.920–0.984. The range of GPI value is

1.472–2.000, ranking 1–23. The pseudocode of the proposed model is provided in S3

Appendix.
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